skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Saini, Satyam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increasing demands for cloud-based computing and storage, the Internet of Things and machine learning-based applications have necessitated the use of more eficient cooling technologies. Direct-to-chip liquid cooling using cold plates has proven to be one of the most effective methods to dissipate the high heat luxes of modern high-power CPUs and graphics processing units (GPU). While the published literature has well-documented research on the thermal aspects of direct liquid cooling, a detailed account of reliability degradation is missing. The present investigation provides an in-depth experimental analysis of the accelerated degradation of copper cold plates used in high-power direct-to-chip liquid cooling in data centers. 
    more » « less
  2. Effective cooling is crucial for high-power liquid-cooled servers to ensure optimal performance and reliability ofcomponents. Thermal characterization is necessary to ensure that the cooling system functions as intended, is energy efficient, and minimizes downtime. In this study, a proposed methodology for thermal characterization of a high-powerliquid-cooled server/TTV [server and TTVs (thermal test vehicle) are used interchangeably] is presented. The server layout includes multiple thermal test vehicle setups equipped with direct-to-chip cold plates, with two or more connected in series to form a TTV cooling loop. These cooling loops are connected in parallel to the supply and return plenums of the cooling loop manifold, which includes a chassis-level flow distribution manifold. To obtain accurate measurements, two identical server/TTV prototypes are instrumented with sensors for coolant flow rate and temperature measurements for every TTV cooling loop. Four ultrasonic flow sensors are installed in the flow verification server/TTV to measure the coolant flow rate to each TTV cooling loop. In the thermal verification server, thermistors are installed at the outlet of each GPU heater of TTV cooling loop to log temperature measurements. The amount of heat captured by the coolant in each TTV cooling loop is subsequently estimated based on the flow rates determined from the flow verification server.This methodology enables precise characterization of the thermal performance of high-power liquid-cooled servers,ensuring optimal functionality, energy efficiency, and minimized downtime. 
    more » « less
  3. Abstract Data centers are critical to the functioning of modern society as they host digital infrastructure. However, data centers can consume significant amounts of energy, and a substantial amount of this energy goes to cooling systems. Efficient thermal management of information technology equipment is therefore essential and allows the user to obtain peak performance from a system and enables higher equipment reliability. Thermal management of data center electronics is becoming more challenging due to rising power densities at the chip level. Cooling technologies like single-phase immersion cooling allow overcoming many such challenges owing to their higher thermal mass, lower fluid pumping powers, and potential component reliability enhancements. It is known that immersion cooling deployments require extremely low coolant flow rates, and, in many cases, natural convection can also be used to sufficiently dissipate the heat from the hot server components. It, therefore, becomes difficult to ascertain whether the rate of heat transfer is being dominated by forced or natural convection. This may lead to ambiguity in choosing an optimal heat sink solution and a suitable system mechanical design due to unknown flow regimes, further leading to sub-optimal system performance. Mixed convection can be used to enhance heat transfer in immersion cooling systems. The present investigation quantifies the contribution of mixed convection using numerical methods in an immersion-cooled server. An open compute server with dual CPU sockets is modeled on Ansys Icepak with varying power loads of 115W, 160W and 200W. The chosen dielectric fluid for this single-phase immersion-cooled setup is EC-100. Steady-state Computational Fluid Dynamics (CFD) simulations are conducted for forced, natural, and mixed convection heat transfer in a thermally shadowed server configuration at varying inlet flow rates. A baseline heat sink and an optimized heat sink with an increased fin thickness and reduced fin count are utilized for performance comparison. The effect of varying Reynolds number and Richardson number on the heat transfer rate from the heat sink is discussed to assess the flow regime, stability of the flow around the submerged components which depends on the geometry, orientation, fluid properties, flow rate and direction of the flow. The dimensionless numbers’ influence on heat transfer rate from a conventional air-cooled heat sink in immersion versus an immersion-optimized heat sink is also compared. The impact of server orientation on heat transfer behavior for the immersion optimized heat sink is also studied on heat transfer behavior for the immersion optimized heat sink. 
    more » « less
  4. Abstract The increasing demand for high-performance computing in applications such as the Internet of Things, Deep Learning, Big data for crypto-mining, virtual reality, healthcare research on genomic sequencing, cancer treatment, etc. have led to the growth of hyperscale data centers. To meet the cooling energy demands of HPC datacenters efficient cooling technologies must be adopted. Traditional air cooling, direct-to-chip liquid cooling, and immersion are some of those methods. Among all, Liquid cooling is superior compared to various air-cooling methods in terms of energy consumption. Direct on-chip cooling using cold plate technology is one such method used in removing heat from high-power electronic components such as CPUs and GPUs in a broader sense. Over the years Thermal Design Power (TDP) is rapidly increasing and will continue to increase in the coming years for not only CPUs and GPUs but also associated electronic components like DRAMs, Platform Control Hub (PCH), and other I/O chipsets on a typical server board. Therefore, unlike air hybrid cooling which uses liquid for cold plates and air as the secondary medium of cooling the associated electronics, we foresee using immersion-based fluids to cool the rest of the electronics in the server. The broader focus of this research is to study the effects of adopting immersion cooling, with integrated cold plates for high-performance systems. Although there are several other factors involved in the study, the focus of this paper will be the optimization of cold plate microchannels for immersion-based fluids in an immersion-cooled environment. Since immersion fluids are dielectric and the fluids used in cold plates are conductive, it exposes us to a major risk of leakage into the tank and short-circuiting the electronics. Therefore, we propose using the immersed fluid to pump into the cold plate. However, it leads to a suspicion of poor thermal performance and associated pumping power due to the difference in viscosity and other fluid properties. To address the thermal and flow performance, the objective is to optimize the cold plate microchannel fin parameters based on thermal and flow performance by evaluating thermal resistance and pressure drop across the cold plate. The detailed CFD model and optimization of the cold plate were done using Ansys Icepak and Ansys OptiSLang respectively. 
    more » « less
  5. Abstract The data center’s server power density and heat generation have increased exponentially because of the recent, unparalleled rise in the processing and storing of massive amounts of data on a regular basis. One-third of the overall energy used in conventional air-cooled data centers is directed toward cooling information technology equipment (ITE). The traditional air-cooled data centers must have low air supply temperatures and high air flow rates to support high-performance servers, rendering air cooling inefficient and compelling data center operators to use alternative cooling technology. Due to the direct interaction of dielectric fluids with all the components in the server, single-phase liquid immersion cooling (Sp-LIC) addresses mentioned problems by offering a significantly greater thermal mass and a high percentage of heat dissipation. Sp-LIC is a viable option for hyper-scale, edge, and modular data center applications because, unlike direct-to-chip liquid cooling, it does not call for a complex liquid distribution system configuration and the dielectric liquid can make direct contact with all server components. Immersion cooling is superior to conventional air-cooling technology in terms of thermal energy management however, there have been very few studies on the reliability of such cooling technology. A detailed assessment of the material compatibility of different electronic packaging materials for immersion cooling was required to comprehend their failure modes and reliability. For the mechanical design of electronics, the modulus, and thermal expansion are essential material characteristics. The substrate is a crucial element of an electronic package that has a significant impact on the reliability and failure mechanisms of electronics at both the package and the board level. As per Open Compute Project (OCP) design guidelines for immersion-cooled IT equipment, the traditional material compatibility tests from standards like ASTM 3455 can be used with certain appropriate adjustments. The primary focus of this research is to address two challenges: The first part is to understand the impact of thermal aging on the thermo-mechanical properties of the halogen-free substrate core in the single-phase immersion cooling. Another goal of the study is to comprehend how thermal aging affects the thermo-mechanical characteristics of the substrate core in the air. In this research the substrate core is aged in synthetic hydrocarbon fluid (EC100), Polyalphaolefin 6 (PAO 6), and ambient air for 720 hours each at two different temperatures: 85°C and 125°C and the complex modulus before and after aging are calculated and compared. 
    more » « less
  6. In the United States, out of the total electricity produced, 2% of it is consumed by the data center facility, and up to 40% of its energy is utilized by the cooling infrastructure to cool all the heat-generating components present inside the facility, with recent technological advancement, the trend of power consumption has increased and as a consequence of increased energy consumption is the increase in carbon footprint which is a growing concern in the industry. In air cooling, the high heat- dissipating components present inside a server/hardware must receive efficient airflow for efficient cooling and to direct the air toward the components ducting is provided. In this study, the duct present in the air-cooled server is optimized and vanes are provided to improve the airflow, and side vents are installed over the sides of the server chassis before the duct is placed to bypass some of the cool air which is entering from the front where the hard drives are present. Experiments were conducted on the Cisco C220 air-cooled server with the new duct and the bypass provided, the effects of the new duct and bypass are quantified by comparing the temperature of the components such as the Central Processing Unit (CPUs), and Platform controller hub (PCH) and the savings in terms of total fan power consumption. A 7.5°C drop in temperature is observed and savings of up to 30% in terms of fan power consumption can be achieved with the improved design compared with the standard server. 
    more » « less
  7. Abstract Transistor density trends till recently have been following Moore's law, doubling every generation resulting in increased power density. The computational performance gains with the breakdown of Moore's law were achieved by using multicore processors, leading to nonuniform power distribution and localized high temperatures making thermal management even more challenging. Cold plate-based liquid cooling has proven to be one of the most efficient technologies in overcoming these thermal management issues. Traditional liquid-cooled data center deployments provide a constant flow rate to servers irrespective of the workload, leading to excessive consumption of coolant pumping power. Therefore, a further enhancement in the efficiency of implementation of liquid cooling in data centers is possible. The present investigation proposes the implementation of dynamic cooling using an active flow control device to regulate the coolant flow rates at the server level. This device can aid in pumping power savings by controlling the flow rates based on server utilization. The flow control device design contains a V-cut ball valve connected to a microservo motor used for varying the device valve angle. The valve position was varied to change the flow rate through the valve by servomotor actuation based on predecided rotational angles. The device operation was characterized by quantifying the flow rates and pressure drop across the device by changing the valve position using both computational fluid dynamics and experiments. The proposed flow control device was able to vary the flow rate between 0.09 lpm and 4 lpm at different valve positions. 
    more » « less
  8. Abstract Continuous rise in cloud computing and other web-based services propelled the data center proliferation seen over the past decade. Traditional data centers use vapor-compression-based cooling units that not only reduce energy efficiency but also increase operational and initial investment costs due to involved redundancies. Free air cooling and airside economization can substantially reduce the information technology equipment (ITE) cooling power consumption, which accounts for approximately 40% of energy consumption for a typical air-cooled data center. However, this cooling approach entails an inherent risk of exposing the ITE to harmful ultrafine particulate contaminants, thus, potentially reducing the equipment and component reliability. The present investigation attempts to quantify the effects of particulate contamination inside the data center equipment and ITE room using computational fluid dynamics (CFD). An analysis of the boundary conditions to be used was done by detailed modeling of ITE and the data center white space. Both two-dimensional and three-dimensional simulations were done for detailed analysis of particle transport within the server enclosure. An analysis of the effect of the primary pressure loss obstructions like heat sinks and dual inline memory modules inside the server was done to visualize the localized particle concentrations within the server. A room-level simulation was then conducted to identify the most vulnerable locations of particle concentration within the data center space. The results show that parameters such as higher velocities, heat sink cutouts, and higher aspect ratio features within the server tend to increase the particle concentration inside the servers. 
    more » « less
  9. Abstract Over the last decade, several hyper-scale data center companies such as Google, Facebook, and Microsoft have demonstrated the cost-saving capabilities of airside economization with direct/indirect heat exchangers by moving to chiller-less air-cooled data centers. Under pressure from data center owners, information technology equipment OEMs like Dell and IBM are developing information technology equipment that can withstand peak excursion temperature ratings of up to 45 °C, clearly outside the recommended envelope, and into ASHRAEs A4 allowable envelope. As popular and widespread as these cooling technologies are becoming, airside economization comes with its challenges. There is a risk of premature hardware failures or reliability degradation posed by uncontrolled fine particulate and gaseous contaminants in presence of temperature and humidity transients. This paper presents an in-depth review of the particulate and gaseous contamination-related challenges faced by the modern-day data center facilities that use airside economization. This review summarizes specific experimental and computational studies to characterize the airborne contaminants and associated failure modes and mechanisms. In addition, standard lab-based and in-situ test methods for measuring the corrosive effects of the particles and the corrosive gases, as the means of testing the robustness of the equipment against these contaminants, under different temperature and relative humidity conditions are also reviewed. It also outlines the cost-sensitive mitigation techniques like improved filtration strategies and methods that can be utilized for efficient implementation of airside economization. 
    more » « less